Section: Microbiology

Original Research Article

SEROPREVALENCE OF HEPATITIS A & E VIRUS IN A TERTIARY CARE HOSPITAL, VIJAYAWADA, ANDHRA PRADESH

 Received
 : 10/07/2025

 Received in revised form
 : 02/09/2025

 Accepted
 : 17/09/2025

Keywords:

Acute viral hepatitis, Co-infection, Hepatitis A Virus, Hepatitis E Virus, FLISA

Corresponding Author: **Dr. D. Sarada**,

Email: saradachand@rediffmail.com

DOI: 10.47009/jamp.2025.7.5.232

Source of Support: Nil, Conflict of Interest: None declared

Int J Acad Med Pharm 2025; 7 (5); 1216-1219

D. Sarada¹, Mehnaz Talat²

¹Associate Professor and Principle Investigator VRDL, Department of Microbiology, Siddhartha Medical College, Vijayawada, Andhra Pradesh, India.

²Assistant Professor, Department of Microbiology, Siddhartha Medical College, Vijayawada, Andhra Pradesh, India

ABSTRACT

Background: Acute viral hepatitis (AVH) caused by enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV) poses a major health problem in developing countries like India. Both viruses are transmitted primarily by the feco-oral route mainly through contaminated water. This study was undertaken to determine the prevalence of HAV and HEV and incidence of co-infection of HAV and HEV in patients presenting with AVH. Materials and Methods: The study was conducted in the Virology Research and Diagnostic Laboratory, on suspected cases of acute viral hepatitis attending government general hospital, Vijayawada. All the serum samples collected from the patients were screened for IgM antibodies to HAV and HEV by IgM capture ELISA method. Result: A total of 221 samples were tested and a seroprevalence of 12.21% (27) was observed in our study. Antibodies to HAV were detected in 5.4%(12) and seropositivity for HEV was 3.2% (09). HAV infection was observed in the age group <15 years and HEV in >30 years. Out of a total of 12 patients positive for HAV infection, males were 07, and females were 05. HEV IgM was positive in 09 patients, of which 07 were males and females were 02. Co-infection was noted in six cases (2.7%) of which 4 male and 2 were females. Conclusion: The present study points toward HAV being the prime etiological agent for acute viral hepatitis in children and HEV in adults. A comparatively lower prevalence may be a consequence of an overall declining trend due to improved living standards and environmental hygiene.

INTRODUCTION

Acute viral hepatitis (AVH) caused by enterically transmitted hepatitis A virus (HAV) and hepatitis E virus (HEV) poses a major health problem in developing countries. Both viruses are transmitted primarily by the feco-oral route through contaminated water! Outbreaks and sporadic cases of hepatitis A and E occur globally and are closely associated with unsafe drinking water, inadequate sanitation and poor hygiene and health services in resource-limited countries.^[2,3]

HAV, being the most common cause of acute hepatitis in the paediatric age group remains self-limiting and does not progress to chronic liver disease. Children with HAV commonly present with nonspecific gastrointestinal symptoms and jaundice with cholestasis. HAV in adults has a more severe course than in children. [4,5] HAV is a non-enveloped 27-nm, heat, acid and ether-resistant ribonucleic acid (RNA) virus belonging to genus Hepato-virus of Picornaviridae family. Antibodies to HAV (anti-HAV) can be detected during acute illness when

serum aminotransferase activity is elevated and faecal HAV shedding is still occurring. This early antibody response is predominantly of the IgM class and persists for several months, rarely for 6-12 months. During convalescence, however, anti-HAV of the IgG class becomes the predominant antibody. [6] Hepatitis A is a vaccine-preventable disease but the vaccine has not been deployed in India, [7] as more than 80% of children by the age of 10 years develop antibodies as a result of natural infection, [8] and since the disease is often clinically insignificant in this age group, the use of vaccine is not justified and is still a subject of debate. [7]

HEV is known to cause infection in young to middle-aged adult population as compared to children with a greater predilection to cause outbreaks in the community as compared to HAV. [9] HEV is a non-enveloped virus with a single-stranded positive-sense RNA in the genus Herpes virus of family Herpesviridae. The IgM and IgG classes of antibodies to HEV can be detected, but the former falls rapidly after acute infection, reaching low levels within 6 months. [6] HEV causes high mortality in

pregnant women, 20-30% as compared to 0.2-1% in general population.12 The infection during pregnancy is associated with an increased risk of prematurity, abortion, low birth weight, perinatal mortality, fulminant hepatitis and maternal mortality. [13]

In children as well as adults with pre-existing chronic liver disease, Co-infection with HAV – HEV can develop into fulminant hepatitis leading to serious complications and increased mortality. [15] Although the clinical diagnosis of the co-existence of HAV and HEV viruses as a cause of viral hepatitis is difficult and cannot be differentiated from mono-infection, laboratory diagnosis either by serology or polymerase chain reaction (PCR) can be a useful tool in the diagnosis of the simultaneous presence of both the viruses. [16]

Most of the studies show an increase in the seroprevalence of HAV, HEV and their co-infection. There is a noticeable shift in the disease spectrum from children to adults as a result of improvement in the socio-economic conditions and there has been an emphasis on the promotion of increased sanitary infrastructure by India under the Swatch Bharat (Clean India) mission since 2014.[17] In consideration of all, the study was undertaken to highlight the viral agents responsible for causing hepatitis in patients presenting with jaundice in Government General hospital, Vijayawada and to develop strategies for surveillance of preventable viral hepatitis at the community level. The perseverance of this retrospective study was to analyze the presence of HEV and HAV among cases of viral hepatitis and to study their epidemiological pattern regarding gender, age and season in patients attending government general hospital, Vijayawada.

MATERIALS AND METHODS

A retrospective analysis of 221 samples received in Viral Research and Diagnostic Laboratory, Department of Microbiology from patients attending Government General Hospital with features suggestive of acute viral hepatitis were included in the study.

Serum samples were tested for the presence of IgM antibodies to HAV and HEV with commercially available ELISA kits (General Biological Corp, HEPAVASE MA-96 for HAV IgM ELISA and MP diagnostics for HEV IgM ELISA) following the manufacturers protocol. [18,19] Specimens with absorbance values greater than the cut-off value were considered REACTIVE for anti-HAV IgM and anti-HEV IgM

Statistical analysis of the data collected was done using SPSS version 16(Microsoft Office, Redmond, Washington, USA.

RESULTS

A total of 221 samples were tested for the presence of IgM antibodies to HAV and HEV. An overall seroprevalence of 12.21% was observed with a prevalence rate of 5.4% for HAV, 4% for HEV and 2.7% for Co-infection with HAV and HEV in our study.

Out of 12 samples tested positive for HAV, males were 7 and females were 5 and children below the age of 15 years were most infected. HEV infection was seen in 09 individuals of which males were 07 and females were 02. HEV prevalence was seen in adults above 30 years of age. Co-infection with HAV and HEV was noticed in 6 cases among which 4 were males and 2 were females. Four cases of co-infection were observed in the age group 16 to 30 years.

Cases with infection of HAV and HEV were present throughout the year and an increase in HEV was noted at the beginning of the rainy season. None of these differences were statistically significant.

DISCUSSION

This retrospective study was undertaken to determine the prevalence of HAV and HEV and their coinfection in patients presenting with symptoms of Acute hepatitis attending government general hospital, Vijayawada.

An overall prevalence rate of 12.21% was observed for hepatitis viruses A and E in our study. Seroprevalence for HAV was 5.4% which coincides with studies by Meghna S Palewar et al, [20] at 6.7% and Samaddar A et al, [21] with 6.96% whereas Monika et al, [22] and Shinde et al, [23] reported a higher prevalence at 9.4% and 10.9%.

Seroprevalence for HEV was 4% in our study where most of the studies reported a higher prevalence at 8.5% by Palewar MS et al,^[20] and 9.63% by Samaddar A et al.^[21]

Co-infection with Hepatitis A and E viruses was 2.7% in our study and correlates this with study by Samaddar A et al,^[21] reporting at 2.07%. Most other studies reported a lower incidence with Murhekar MV ^[24] at 1.3%, Shinde RV,^[23] at 0.8% and Palewar MS^[20] at 0.6%. A higher prevalence rate of 5.1% was reported by Agarwal et al,^[25] and 5.31% by Das et al.^[16]

The reasons behind this declining trend may be due to the high prevalence of antibodies in the general population, the availability of vaccines, improved living standards and environmental hygiene. [26]

Prevalence for both HAV and HEV were higher in males (77.78%, 58.33%) than in females (22.22%, 41.67%) as also reported by Shinde et al, [23] at 61.9%, 54.1% in males and 38.6% and 45.8% in females. [22,27] This could be related to greater exposure of men in their professional and social activities.

HAV infection is a disease of infants and young children and the same was observed in our study with

25% of total HAV positivity in children below 15 years. On the other side, HEV infection was reported in the population above 30 years of age, more frequent in males than in females. The risk and severity of HEV infection increase with age and are predominantly seen among young adults. In the study conducted by Takahashi M et al,[28] Hepatitis E was more common in young adults (15-44 years). The low prevalence of anti-HEV antibodies in children is attributable to a lack of exposure to HEV in children.^[28] This seems paradoxical for an enteral infection transmission, in which exposure is theoretically the same for all people subject to the terms of hygiene (Pawlotsky, 2002).^[29] It is possible that HEV infection is usually anicteric and goes unnoticed in children. These findings also agree with the results found in some other studies too.^[27,30] The age-specific seroprevalence of antibodies to HEV was studied in Pune, India where they accomplished that antibodies to HEV were uncommon in children and reached a peak prevalence of 33-40% in early adulthood.[31]

In our study, 2.7% of co-infection were below the age of 45 years, with increased incidence in 16-30 years age group (4 cases) which is in conjunction with other studies by Shinde et al,^[23] reporting co-infection rate was high in 16-25 years age group. Bansal et al,^[32] reported that among coinfected individuals majority were adults. The possibility for co-existence of infection may be due to the same mode of transmission, doubtful immunity from both the viruses or a divergent strain of virus which could not be ruled out. Co-infection with HAV and HEV does not affect the prognosis of the patient much as these cases usually resolve with conservative treatment but in rare cases may lead to acute liver failure or hepatic encephalopathy.^[22,26]

Seasonal variation of HAV and HEV was studied and cases were reported throughout the year as these infections are endemic in India as reported in other studies,[27] with a peak of HAV infections observed in the month of February whereas others reported in rainy and winter season. It is possible that crosscontamination of drinking water with sewage and fecal contamination of water pipelines could be the reasons for the report of positive cases. Jain et al, [34] reported the maximum number of cases in the months from February through June (i.e. autumn and summer seasons). Whereas Bhagra S et al,[35] studied the seasonal trend more during the winter season (19 January to 31 March), summers (1 April to 15 June) and monsoons (16 June to 31 July). We have collected the laboratory-based data therefore true seasonal variation in the community could not be

Out of the total patients tested negative for HEV and HAV infection, four patients were found to be positive for HBsAg. Thus, seronegative patients can be screened for HBV and HCV infection for proper confirmatory diagnosis and thereby proper treatment plan and avoid the complications that encounter.

CONCLUSION

While it is always challenging to diagnose the etiological agent as HAV and HEV clinically, biochemical analysis and serological testing will help in diagnosing the presence of IgM antibodies to the viruses as a tool to early diagnosis. This can lead the clinician in early management of the cases and undertaking preventive measures by the local health authorities.

Acknowledgements: We sincerely thank the Secretary to Government of India, Department of Health Research and Director General, Indian Council of Medical Research for the support under VRDL Project. We also thank the technical staff of VRDL for their support.

REFERENCES

- Kumar M, Sarin SK. Viral hepatitis eradication in India by 2080 gaps, challenges & targets. Indian J Med Res 2014;140:1
- WHO Hepatitis A Fact Sheet Updated 2015. Available from: http://www.who.int/mediacentre/factsheets/fs328/en/.
- WHO Hepatitis E Fact Sheet Updated 2015. Available from: http://www.who.int/mediacentre/factsheets/fs280/en/.
- Chen, Y.C., Huang, L.T., Wang, S.M., Tiao, M.M. and Liu, J.W., 2007. Acute hepatitis a infection in children: A 20-year experience of a medical center in Southern Taiwan. Acta paediatrica Taiwanica= Taiwan er ke yi xue hui za zhi, 48(3), pp.131-134.
- Stránský, J., Honzáková, E., Vandasová, J. and Kyncl, J., 1995. A relapsing and protracted form of viral hepatitis A: Comparison of adults and children. Vnitrni Lekarstvi, 41(8), pp.525-530.
- Braunwald, E., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L. and Jameson, J.L., 2001. Harrisons principles of internal medicine. In Harrisons principles of internal medicine-15th edition (pp. 1187-1187).
- Batra, Y., Bhatkal, B., Ojha, B., Kaur, K., Saraya, A., Panda, S.K. and Acharya, S.K., 2002. Vaccination against hepatitis A virus may not be required for schoolchildren in northern India: results of a seroepidemiological survey. Bulletin of the World Health Organization, 80, pp.728-731.
- Murhekar, M.V., Ashok, M., Kanagasabai, K., Joshua, V., Ravi, M., Sabarinathan, R., Kirubakaran, B.K., Ramachandran, V., Shete, V., Gupta, N. and Mehendale, S.M., 2018. Epidemiology of hepatitis A and hepatitis E based on laboratory surveillance data—India, 2014–2017. The American journal of tropical medicine and hygiene, 99(4), p.1058.
- Kaur, M., Sidhu, S.K., Singh, K., Devi, P., Kaur, M. and Singh, N.J., 2017. Hepatitis E virus: A leading cause of waterborne viral hepatitis in Northwest Districts of Punjab, India. Journal of laboratory physicians, 9(02), pp.121-124.
- Fenaux, H., Chassaing, M., Berger, S., Gantzer, C., Bertrand, I. and Schvoerer, E., 2019. Transmission of hepatitis E virus by water: An issue still pending in industrialized countries. Water research, 151, pp.144-157.
- Dalton, H.R. and Seghatchian, J., 2016. Hepatitis E virus: Emerging from the shadows in developed countries. Transfusion and Apheresis Science, 55(3), pp.271-274.
- Chandra, N.S., Sharma, A., Rai, R.R. and Malhotra, B., 2012. Contribution of hepatitis E virus in acute sporadic hepatitis in north western India. Indian Journal of Medical Research, 136(3), pp.477-482.
- 13. Ahmed, A., Ali, I.A., Ghazal, H., Fazili, J. and Nusrat, S., 2015. Mystery of hepatitis e virus: recent advances in its diagnosis and management. International Journal of Hepatology, 2015(1), p.872431.

- Reddy, D.C.S., 2019. Elimination of viral hepatitis: Evolution and India's response. Indian journal of public health, 63(4), pp.275-276.
- Arora, N.K., Nanda, S.K., Gulati, S., Ansari, I.H., Chawla, M.K., Gupta, S.D. and Panda, S.K., 1996. Acute viral hepatitis types E, A, and B singly and in combination in acute liver failure in children in north India. Journal of medical virology, 48(3), pp.215-221.
- Das, A.K., Ahmed, S., Medhi, S. and Kar, P., 2014. Changing patterns of aetiology of acute sporadic viral hepatitis in India-Newer insights from North-East India. International Journal of Current Research and Review, 6(19), p.14.
- 17. Dandabathula, G., Bhardwaj, P., Burra, M., Rao, P.V.P. and Rao, S.S., 2019. Impact assessment of India's Swachh Bharat Mission-Clean India Campaign on acute diarrheal disease outbreaks: Yes, there is a positive change. Journal of family medicine and primary care, 8(3), pp.1202-1208.
- Instruction for Use of HEPAVASE MA-96 (TMB) Doc. No.: IUMAPT1 Issue date:2009/08/20-3.
- Instruction for Use of MP Diagnostics HEV ELISA 4.0 Date of Revision: 2016-02 MBE0011-ENG-3.
- Palewar, M.S., Joshi, S., Choudhary, G., Das, R., Sadafale, A. and Karyakarte, R., 2022. Prevalence of Hepatitis A virus (HAV) and Hepatitis E virus (HEV) in patients presenting with acute viral hepatitis: A 3-year retrospective study at a tertiary care Hospital in Western India. Journal of Family Medicine and Primary Care, 11(6), pp.2437-2441.
- Samaddar, A., Taklikar, S., Kale, P., Kumar, C.A. and Baveja, S., 2019. Infectious hepatitis: A 3-year retrospective study at a tertiary care hospital in India. Indian journal of medical microbiology, 37(2), pp.230-234.
- 22. Monika A, Ruchi K, Ashish B, Pallab S. A study of seroprevalence and co-infection of hepatitis A and hepatitis E viruses in sporadic cases in an endemic area. J Med Sci Health 2016;2(3):1-5.
- Shinde, R.V., Shinde, A.R., Patil, A.D., Pawar, S., Mohite, S. and Patil, S., 2020. Co-Infection of hepatitis A and hepatitis E viruses among the acute viral hepatitis cases in tertiary care hospital—A four years retrospective study. Journal of Pure and Applied Microbiology, 14(3), pp.2047-2051.
- Murhekar, M.V., Murhekar, K.M. and Sehgal, S.C., 2008. Epidemiology of hepatitis B virus infection among the tribes of Andaman and Nicobar Islands, India. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(8), pp. 729-734.
- Agarwal, K., Fung, S.K., Nguyen, T.T., Cheng, W., Sicard, E., Ryder, S.D., Flaherty, J.F., Lawson, E., Zhao, S., Subramanian, G.M. and McHutchison, J.G., 2015. Twenty-

- eight day safety, antiviral activity, and pharmacokinetics of tenofovir alafenamide for treatment of chronic hepatitis B infection. Journal of hepatology, 62(3), pp.533-540.
- Arora, D., Jindal, N., Shukla, R.K. and Bansal, R., 2013.
 Water borne hepatitis A and hepatitis E in Malwa region of Punjab, India. Journal of clinical and diagnostic research: JCDR, 7(10), p.2163.
- Joon, A., Rao, P., Shenoy, S.M. and Baliga, S., 2015.
 Prevalence of Hepatitis A virus (HAV) and Hepatitis E virus (HEV) in the patients presenting with acute viral hepatitis.
 Indian journal of medical microbiology, 33, pp.S102-S105.
- 28. Takahashi, M., Nishizawa, T., Gotanda, Y., Tsuda, F., Komatsu, F., Kawabata, T., Hasegawa, K., Altankhuu, M., Chimedregzen, U., Narantuya, L. and Hoshino, H., 2004. High prevalence of antibodies to hepatitis A and E viruses and viremia of hepatitis B, C, and D viruses among apparently healthy populations in Mongolia. Clinical and Vaccine Immunology, 11(2), pp.392-398.
- Pawlotsky, J.M., 2002. Molecular diagnosis of viral hepatitis. Gastroenterology, 122(6), pp.1554-1568.
- Kamal, S.M., Mahmoud, S., Hafez, T. and El-Fouly, R., 2010.
 Viral hepatitis A to E in South Mediterranean countries.
 Mediterranean journal of hematology and infectious diseases, 2(1), p.e2010001.
- Pelosi, E. and Clarke, I., 2008. Hepatitis E: a complex and global disease. Emerging health threats journal, 1(1), p.7069.
- Arankalle, V.A., Tsarev, S.A., Chadha, M.S., Alling, D.W., Emerson, S.U., Banerjee, K. and Purcell, R.H., 1995. Agespecific prevalence of antibodies to hepatitis A and E viruses in Pune, India, 1982 and 1992. Journal of infectious diseases, 171(2), pp.447-450.
- 33. Bansal, Y., Singla, N., Garg, K., Sharma, G., Gill, M. and Chander, J., 2022. Seroprevalence of hepatitis A and hepatitis E in patients at a teaching hospital of northern India over a period of 8 years. Journal of Family Medicine and Primary Care, 11(2), pp.567-572.
- 34. Jain, P., Prakash, S., Gupta, S., Singh, K.P., Shrivastava, S., Singh, D.D., Singh, J. and Jain, A., 2013. Prevalence of hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus and hepatitis E virus as causes of acute viral hepatitis in North India: A hospital based study. Indian journal of medical microbiology, 31(3), pp.261-265.
- 35. Bhagra, S., Singh, D., Sood, A. and Kanga, A., 2017. Bacteriological profile of water samples in and around Shimla hills: A Study from the Sub Himalayan Region. International Journal of Community Medicine and Public Health International Journal of Community Medicine, 4, pp.1966-1971.